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Phase determination of electron scattering from thin crystals via the unitarity equation including 
inelasticity due to plasmons is considered. It is concluded that the uniqueness properties of the solution 
are unlikely to be affected by plasmon production. 

Introduction 

In a previous publication (Boyce & Roberts, 1974) 
(hereinafter referred to as I) we have applied the unit- 
arity equation to the determination of the phases of 
electron scattering from thin crystals. The present 
work considers the effect of plasmon excitation and 
concludes that the uniqueness properties of the elastic 
case are unlikely to be affected by plasmon production. 

The principal change in the analysis is the introduc- 
tion of a new term into the unitarity relation. This 
represents the effect of an intermediate plasmon state 
on the elastic scattering amplitude. Although the proof 
of phase uniqueness used in I is no longer directly ap- 
plicable, the form of the change is such that the prop- 
erty of uniqueness is likely to be unaffected. This has 
been confirmed by a numerical test case. 

In the first section we restate the main results of I. 
In § 2 the free and interaction Hamiltonians for in- 
elastic scattering from a crystal of finite width are ob- 
tained, while in § 3 the corresponding unitarity relation 
is derived and reduced to a form similar to that of I. 
The results of a numerical test case are given in § 4. 

1. Resum~ of elastic scattering 

In I we considered the elastic scattering from a crystal 
of finite width. Using time-independent transition ma- 
trix formalism it was shown that the scattering am- 
plitude, f(p' ,p),  for an electron of initial momentum p 
scattering to a final momentum p', could be expanded 
a s  

f ( p ' , p ) = - - z r  ~f(p2,M)32(p'--p)d-c+M). (1.1) 
M 

The lattice vectors are a, b and c; their reciprocals are 
defined by ~ = 2nv- 1 (b x c), with v = a .  (b x c). The lat- 
tice is finite in the c direction while 

M = l ~ + m b ,  

summation over M implying summation over the in- 
teger pair (/, m). 

Conservation of probability imposes the non-linear 
unitarity equation 

2vp~: Imf(p2,L)=(2n)  3 ~f(pZ, M)*f(pZ, L - M )  . (1.2) 
M 

Subject to a constraint condition on the moduli, equa- 
tion (3.12) of I, the above equation defines a contrac- 
tion mapping on the principal values of the phases of 
the amplitudes; consequently it may be iterated to 
yield a unique set of phases for any set of intensities 
which satisfy the constraint. We wish to establish the 
equivalent equation in the presence of plasmon excita- 
tion. In order to do so we consider the form of the 
total Hamiltonian in the next section. 

2. The Hamiltonian and completeness relation 

As we shall be concerned with the creation and anni- 
hilation of plasmons it will be convenient to adopt a 
second-quantized formalism. We define the creation 
operator, Ct(p), and the annihilation operator, C(p), 
of an electron of momentum p to satisfy the anti-com- 
mutation relations 

{C(p), Ct(p)) = •3(p- p ' ) .  (2.1) 

The Hamiltonian of a free electron of mass m0 may be 
expressed in terms of them as* 

H(electron)= I d3p~(p)Ct(p)C(P) (2.2) 

where 
c(p) = (2m0)-~p 2 . (2.3) 

The electron-lattice interaction Hamiltonian, V, may 
be expressed as * 

V= I d3P' I d3pCt(P')Y/'(P'-P)C(P)' (2.4) 

where Y/'(q) is the Fourier transform of the total lattice 
potential, 

y'(x) = Z xA) (2.5) 
A 

where 
Xa = la + mb + no, (2.6) 

the summation being over the integer triple (l,m,n). 
We shall suppose that the lattice is rectangular, with 
Ill -< L, Iml -< M, Inl -< N, the volume of the specimen 
being 

t2= (2L+ 1) (2M+ 1) (2N+ 1)abc. (2.7) 

* We employ the same notation as in I. 
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It is shown in Appendix A that for large L, M and N 
the potential appearing in equation (2.3) takes the form 

~/'(q) = V(q)~L(q. a)~Mfq, b) gJte(q • c) (2.8) 

where 
~L(~) -- ~ 2L exp {-- LeTt -*(~-  27ri)2} • (2.9) 

l 

Bohm and Pines (Pines, 1963; Shevchik, 1974) have 
shown that given a collection of f f  free electrons con- 
fined to a volume fl the collective excitations caused 
by the long-range part of the Coulomb interaction may 
be represented, to a good approximation, in terms of 
plasmon annihilation and creation operators, b(k) and 
b*(k), respectively, by the Hamiltonian 

H =  ~ {b*(k)b(k)+½}hco . (2.10) 
k 

If periodic boundary conditions are imposed then 

k=Dr{l(2L+ 1 ) - l a - q + m ( 2 M +  1)-*b-'j 

+n(2N+ 1)-'t-*t} (2.11) 

while the plasmon operators satisfy the commutation 
relations 

[b(k),b'(k')]=&. ,,, . (2.12) 

The plasmon frequency is determined by 

co = (4rcag" e 2 mo ,),/2. (2.13) 

while the range of k summation is restricted by Ikl-< kc, 
kc being chosen so that only the long-range part of the 
Coulomb interaction is represented; k~ is approximate- 
ly half the momentum of the Fermi level. 

It is convenient to neutralize the overall charge of 
the specimen by adding a constant background charge 
of total JV'e. This modifies the Hamiltonian to 

H(plasmon)= ~ '  [{b*(k)b(k)+½}hco-½,A/'M2(k)] (2.14) 
k 

with 
M(k)2=4zr eZ (k2 + iE) - '  (2.15) 

the k--0 term being omitted from the summation. 
The matrix element of the interaction Hamiltonian 

between a fast electron at x and ag" conduction elec- 
trons at xl, • • • ,x-c is 

t ¢ &;  xl,...,x-cl Ulx; x, . . . ,x.c)  
=a(x'-x)a(xi-x,)...a(xS.-x-c)u(x; x,...,x-c) 

(2.16) 
where 

- C  

U(x; x,,...,x.c)= ~ e ~ Ix-x,l-'. (2.17) 
i = 1  

Within the specimen i.e. xef2 

e 2 I x l - * = o - *  ~ M(k)  2 exp ( ik .  x) (2.18) 
k 

and consequently we may express the long-range part 
of the interaction matrix element, including a constant 
background, as 

where 

v(x, xl, . . .  ,x-c) 
= ~-1 ~ ,  Q0a)Me(k) exp (ik. x)xeg2 

k 

= 0 xCf2 

(2.19) 

- C  

OOi)= ~ exp (ik. x,) (2.20) 
i = l  

is the Fourier transform of the number density of con- 
duction electrons, and Ikl-< kc, with k =  0 omitted. 

The Bohm-Pines subsiduary condition (Shevchik, 
1974) for physical states enables 0(k) to be related to 
the plasmon collective momentum operator, H(k) by 

{ H(k) - M (k)~(k) } [ phys) = 0 (2.21) 

while H(k) may be represented in terms of plasmon 
operators as 

1-l(k)=i(½hco)'/2{b*Ox)-(b-k)} . (2.22) 

As a result the interaction Hamiltonian between a fast 
electron and the plasmons may be expressed as 

V=iO-'(½hco)'/2 ~'I a3p' Id2pMO0 

x {b*(k)-b(-k)C*(p')C(p)g)(p' + k-p) (2.23) 

where 

~(P)= I2 dax exp (ip. x) (2.24) 

and it is shown in Appendix B that 

aSCp)=v~L(q, a)~M(q, b)~N(q, e) (2.25) 
with 

~L(c0___ 2L ex p { -  ~r-'L2cd}. (2.26) 

The free Hamiltonian is 

H0 = H(electron) + H(plasmon) (2.27) 

where the right-hand side is defined by equations (2.2) 
and (2.13). The ground state, 10), is defined to be an 
eigenstate of the free Hamiltonian which has no plas- 
mons, and all of the electron states occupied up to the 
Fermi level, i.e. 

b(k) [0)=0; C(p) lO)=O, p>pr ;  

C*(p) 10}=0, P < P r .  (2.28) 

Electron and plasmon states may be formed by ap- 
plying appropriate creation operators to 10). In par- 
ticular, the state containing a fast electron of momen- 
tum p and a plasmon of momentum k is defined by 

IP; k)=C*(p)b*(k)IO). (2.29) 



J. F. BOYCE AND S. A. ROBERTS ,. 495 

This is an eigenstate of the free Hamiltonian, H0, with 
eigenvalue 

E=  E0 + e(p) + ha) (2.30) 

where E0 is the energy of the ground state. 
If we make the approximation of considering only 

single plasmon intermediate states then the complete- 
ness relation for states involving a single fast electron is 

1= I d2p [p) (p] + I clap ~ '  [p;k)(p;k] .  (2.31) 

We shall make use of this relation when we consider 
the unitarity relation in the following section. 

3. The unitarity relation 

As shown in I, the unitarity relation may be expressed 
in terms of the transition matrix, T, as 

i (T -T* )=TtT .  (3.1) 

If we consider scattering between single-electron states 
and make use of the completeness relation, equation 
(2.31), assuming single plasmon production, this be- 
comes 

i {(p'lTIp)-(p'lT*lp)}= I daq(P'lT*lq) (qlTIp) 

+ I d3q k ~ (P'lZ*lq; k) (q; klZlP) • (3.2) 

For potentials which fall off sufficiently rapidly at large 
distances the transition matrix, T, is related to the 
Lippmann-Schwinger transition operator, T(z), by 

(p'l ZlP)=~[t(p)- e(p')] lim (p'l Z[e(p) + iE] IP) 
E~O 

(plTlq;k)=~[e(p)-e(q)-hog] lim (plT[e(p)+iE] Iq, k ) .  
~,0 

(3.3) 

Therefore the unitarity relation becomes the limit as 
z---> e(p) from above of 

i {(plT(z) Ip')-(p' lT(z)IP)} 

= I d3q(P'lT*(z)Iq)~[e(q)-e(p)](qlTfz)lP') 

+ I d3q I ~  (p'IT*(z)Iq;k)3[e(q)+hog-e(P)] 

x (q;kIT(z)IP) (3.4) 

with 
~(p') =e(p). 

In the absence of plasmon production the second 
sum of equation (3.4), which represents scattering via 
an intermediate plasmon state, disappears; the relation 
then yields the elastic constraint, equation (1.2), which 
was utilised in I. In the general case, however, it is 
necessary to relate the amplitude for plasmon produc- 

tion, (q;kl TIp) to that for elastic scattering, (P'] TIp). 
Of course a unitarity equation also applies to the plas- 
mon production amplitude. However, the sum over 
states on its right-hand side will involve the amplitude 
for elastic scattering between single-electron, single- 
plasmon states. Thus an open hierarchy of unitarity 
equations is obtained which can be closed only by 
some approximation. 

A suitable approximation may be obtained more 
directly by considering the Lippmann-Schwinger equa- 
tion. This defines the transition operator, T(Z), in 
terms of the free, H0, and interaction, HI, Hamil- 
tonians, by 

T(Z)=HI+H~(Z-Ho-H,)- IHI  . (3.5) 

For the present situation Ho is defined by equation 
(2.27), while HI is the sum of the lattice, V, and plas- 
mon, U, interaction Hamiltonians, equations (2.4) and 
(2.23) respectively: 

Hi=U + V , (3.6) 

As shown in I, as a result of the lattice invariance, we 
may expand 

(p'l T[e(p) + i,] Ip)= - 2pm~ 1 ~f(p2,  K)82(p'- p + K) 
k 

(3.7) 

where the summation is over the two-dimensional in- 
verse lattice vectors 

K=la-q+mb-lj  . (3.8) 

Now we may also define an elastic transition opera- 
tor, ~(Z), by 

~(Z)=  V+ V ( Z - H o -  V)-IV.  (3.9) 

Although T contains the free-plasmon Hamiltonian via 
H0 it is independent of.U and therefore cannot alter 
the number of plasmons of a state. From the defini- 
tions we may express T in terms of T as 

T(Z)= ~(Z)+  U+ U~ T(Z) + ~(Z)A.U 
+ ~(Z)AUAT(Z)+O(U 2) (3,10) 

where 
A=(Z-Ho) -1. (3.11) 

Upon substituting this expansion into the contribu- 
tion to the unitarity equation which involves an inter- 
mediate plasmon, we obtain a set of terms which may 
be written symbolically as 

U*~SU+ U*~UA~+ ~*A *U*~U+ U*6~PA U 
+ UtA * # '3  U+ higher orders, (3.12) 

where 3 implies an energy-conservation delta function. 
The last two terms involve elastic scattering between 

single-electron, single-plasmon states. If we may as- 
sume that to first order the elastic scattering from the 
lattice is independent of the presence of plasmons, viz. 

(p;k'l~P(Z) Ip, k)=6w,k(p' l~P(Z)Ip)+O(U 2) (3.13) 
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then since it follows from equation (3.10) that 

(p ' lZ(Z) l p ) = ( p ' I T ( Z ) I p ) + O ( U 2 ) ,  (3.14) 

we may re-express 2P in terms of T within the unitarity 
sum, thereby obtaining an equation correct to order 
U 4, since the terms to which the approximations of 
equations (3.13) and (3.14) have been applied are of 
order U z. 

The various contributions to the unitarity relation 
are explicitly evaluated in Appendix C, where it is 
shown that 

(p'[ U t JUlp)  = 2pmg 1A(p)~2(p ' -  p) 

(,p'[ U t JUA iVlp) = - iA(p)(p'l TIp) 
(P'I ~'tAt UtJUIp)  = iA(p)(p'l Tt lp)  

(p ' lU t J ~A U IP)= i2pmg ~A (p)f@2 _ 2moho~, 0) 
x c32(p ' -  p) 

+ i2pmff 1B ~ '  K -  V(p 2 - 2mohog, K) 
K 

x ~32(p'-- p + K) 

=((p'lUtAtftJUlp)) * (3.15) 
with 

A (p) = he 2 cop- 2mZoNc log {pkcfhmoo9) -1} 
B=½rche z ogm2o{(hogmo) z +hcomoK2} -I/z (3.16) 

and the transition operator matrix element has been 
expanded as in (3.7). 

When these contributions are substituted into (3.12) 
and use is made of the above expansion the unitarity 
relation, equation (3.4) becomes 

{1 + A(p)} Imf(pZ, K) + BK -1 Im f (p2 -  Zmohog, K) 
=~f*(pZ,  L)f(pZ, K - L )  K ¢ 0  (3.17) 

L 

and 

{ 1 -  A(p)} Imf(pZ,0) + A(p) I m f ( p 2 -  2m0hco,0) 

= ~ If(p2,L) IZ+½A(p). (3.18) 
L 

As inelastic scattering is involved the amplitudes cor- 
responding to two energies, e(p) and e(p)-ha), appear. 
If we may assume that the energy dependence is weak, 
viz. 

f(pZ__ 2rnohco, K)=f(pZ, K) + O(UZ) , (3.19) 

then the structure of the equation becomes similar to 
that of the elastic case, treated in I. 

With the definitions, 

6(K)= lf(pZ, K)l (3.20) 
and 

f(pZ, K)=G(K) exp {i~0(K)}, (3.21) 

equation (3.17) becomes 

RG(K) sin {~(K)-~} 
= ~ '  G(L)G(K-L) cos {~0(L)-~0(K-L)}, (3.22) 

L 

where the prime on the summation indicates that L = 0 
and L = K  are to be omitted while 

R sin ~ = 2G(0) cos ~0(0) 
R c o s ~ = l  +A(p)+BK-1-2G(O)sin (p(0). (3.23) 

The phase of the centre spot follows from expressing 
equation (3.18) as 

{1 + 2A(p)}G(O) sin ~0(0) = ~ IG(L)I 2 +½A(p). (3.24) 
L 

The above equations may be compared with the 
equivalent ones for the purely elastic case, equations 
(3.5), (3.6) and (3.7) of I. They would be structurally 
the same were it not for the K dependence of R and ( 
in the inelastic case. Since they differ it follows that 
the ambiguity analysis of I does not apply directly to 
the inelastic case; however, the K dependence is weak, 
and consequently it is unlikely that the uniqueness of 
a solution is affected. We examine this by means of a 
specific test case in the next section. 

4. A numerical example 

In order to compare our results with the elastic case, 
we chose to test the above analysis by using the the- 
oretical data employed in I, namely amplitudes cor- 
responding to the elastic scattering of 500 keV elec- 
trons by a layer of crystalline sodium nine unit cells 
thick. The moduli of the amplitudes (shown in Table 1 
of I) were used to generate a set of unitary phases by 
iterating equation (3.22), assuming the density of con- 
duction electrons to be 1023 cm -3. The resulting phases 
were found to be independent of the initial values em- 

Table 1. _Phases ( x 103) obtained by iterating the unitarity equation, effects of plasmon production not included 

h k 0 1 2 3 4 5 6 7 8 9 10 
0 104 288 429 542 597 583 
1 224 373 488 572 614 
2 288 353 457 556 602 564 
3 373 444 533 588 609 
4 429 457 523 576 614 
5 488 533 572 611 555 
6 542 556 576 609 589 
7 572 588 611 597 
8 597 602 614 589 
9 614 609 555 

10 583 564 
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ployed in the iteration and are shown in Table 2. The 
set of unitary phases which does not include effects 
of plasmon production is shown in Table 1. 

5. Conclusions 

A method for obtaining the phases of electron scat- 
tering amplitudes from thin crystals has been success- 
fully modified to include effects of plasmon excitation. 
It is considered unlikely that the uniqueness properties 
of the solution are affected. This has been confirmed 
by computing the phases corresponding to 500 keV 
electrons scattered from sodium. 

Comparison of Tables 1 and 2 shows that plasmon 
excitation in sodium has a significant effect on the 
phases, leading to changes in the phases of up to 37 %. 
This is expected as sodium has a large density of con- 
duction electrons. The increase in the phase of the 
centre spot in contrast with the decrease of all other 
phases, is due to the purely inelastic term in the unitarity 
equation contributing only to the forward-scattered 
beam. 

The authors wish to thank Professor R. E. Burge 
for many interesting discussions during the work. One 
of us (S.A.R.) wishes to acknowledge financial support 
from the Science Research Council. 

APPENDIX A 

From equations (2.5) and (2.6) 

, "~(q)= V(q) ~ exp ( - i q .  XA). (A.1) 
A 

But 

exp ( - i q .  XA)= gz,.(q, a)~M(q" b)gJN(q • C) (A.2) 
A 

where 
L sin (/. + -I) (~ + E) 

~,(~) = ~ exp ( -  iod) =lira ~=-~. ,~o sin ½(~+E) (A.3) 

Now ~,.(~) has maxima at c~=217r of height (2L+ 1) 
while 

sin La 
lim -2z~ ~ 3(a-21n) .  (A.4) 

z ~ ,  sin ½a l 

Thus 

{" 1 ~,(e) ~ ~ 2/. exp - ( e -  2l~)2 (A.5) 

and consequently equations (2.8) and (2.9) follow. 

APPENDIX B 

Iadax exp x )=v~ , (q ,  a)~M(q, b)~N(q, c) (B.1) ( - i q .  

where, since we have assumed a rectangular lattice, 

~L(~X) = ILLdx_ exp (-ic~x)=lim 2,__,o sin(c~_____~)L(~ +~) . (B.2) 

By an argument similar to that of Appendix A 

(0c + E) __ 2L exp - (B.3) 

and thus equations (2.25) and (2.26) follow. 

APPENDIX C 

In the calculation of the inelastic contributions to the 
unitarity sum we shall assume that the crystal is effec- 
tively infinite in the a and b directions, the incident 
electron being in the c direction, along the z axis. This 
means that 

gJL(q, a)~M(q, b)=(ab)-la2(q)" (C.1) 
where ql are the components of q perpendicular to the 
z axis. 

Using the definition of U given by equation (2.23) 
the contribution of the first term of (3.12) becomes 

(p'IU*aUIp>= I d3q ~ '  (p'IU+Iq ;k> 

× a[e(p)-e(q)-ho)](q;klUIp) 
= ½he)I2 -I ~ '  M ( k )  z 

k 

x I d3q82(p'-q-k)± ~N(P'--q--k)z) 

× a[~(p' )  - ~(q)  - hco]a2(q + k - p ) ~ - ~ [ ( q  + k - p ) , ]  

= 2~ e 2 hooa2(p')'#N@ ' -  P)z) 

× I dakk-2a[e(p)-e(p-k) -hco] 
I 

(C.2) 
,) 

Table 2. Phases (x 10 a) obtained by iterating the unitarity equation, including the effects of plasmon production 
h k 0 1 2 3 4 5 6 7 8 9 10 
0 119 219 393 517 577 568 
1 141 329 461 550 559 
2 219 303 426 532 617 549 
3 329 411 508 567 592 
4 393 426 497 555 596 
5 461 508 551 592 542 
6 517 532 555 590 574 
7 550 567 592 582 
8 577 617 596 574 
9 595 592 542 

10 568 549 

A C 32A - 10 
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where we have used 

• ~[(p- q -  k)z] --- ~[(p- q -  k)z] 

within the integral, and made the replacement 

~ '  ---~ I2 1 dak. 

In polar coordinates 

(c.3) 

l dakk -23[e(p) - e (p-  k) - ha)] 

=mo(2zcp)-~ l~dkk-~ S'_ d(cos O) 

x 8[cos O-(2pk)-~{k z +2mohoo})]=mo(2rcp) -~ dkk -~ 
ko 

where 
k0 =p - (p2 _ 2m0hoo)l/2. 

Hence, for p large, 

(C.4) 

(C.5) 

(p'[ U*~UIp) 
= 2 e 2 hoop-lmoNc log [pkc(mohoo)-l]SZ(p')± 
= 2pmo ~A(p)SZ(p ' -  p)± (C.6) 

as p is along the z axis. 
The calculation of the unitarity contribution from 

7"*AtUtcSU is simplified by writing it as 

(p'IT*d*U*~UIp> 

= f d3q(P'lT*lq> [e(P)-'e(q)-&]-I(qlU*'~UIp) 

=(2Nc)-~A(P) S daq(P'lT*lq) 

× [e(p)- q)±eN[(q- 

{' 2 sin [(p-q~)c] 
= (2Nc) - IA (p) dqz (p-q~) 

x It(p) - e(q) - i,]- ~(P'I it* I q} -~ iA (p)(p' I T*Ip) 
(c.7) 

for p large, where we have ignored the contribution 
from backward elastic scattering. Thus the second equa- 
tion of (3.15) follows. The third is obtained by a sim- 
ilar analysis. 

In the calculation of the fourth and fifth terms of 
(3.12) it is necessary to utilize the lattice symmetry ex- 
pressed by equation (3.7) and also to treat forward 
scattering, p' =p, separately. Utilising equation (3.13) 
yields 

(P'I U*~A UIp> 

= I daq ~ S  daq'<p'lUlq;k>~[e(P)-e(q)-hoo]<qlTIq') 

× [8(P)-e(q')-hoo-&]-~(q ' ;k'l UIp), (C.8) 

but 

6[efp')-e(q)-hool=mq-~{6(q~-q)+6(qz +q)} (C.9) 

with 
~= {p;2-k[  + 2p'.k±-2mohoo}l/2, (C.lO) 

where k± are the components of k perpendicular to the 
z direction. Also we may approximate the ~N within 
the integrand by delta functions, and consequently 

(p'IU*~TAUIp) 

= 2m° e2hoo I k ) -  boo + 

x ( p ' - k l T l p - k )  (C.11) 

in which 
2 2 2 k =k±+ka (C.12) 

with 
k3=p; -#  . (C.13) 

When the elastic matrix element is expanded by means 
of equation (3.7) the expression becomes 

(P'I U*5~A U[p) 
= -4roe 2 hoop ~ , f ( p 2 _  2m0hoo, K)SE(p,_p + K)W(p),  

K 

(c.14) 
where 

W(p)= ld2k[Ic2~{e(p)-e(,p-k)-hoo+ &}] -~ (C.15) 

and we have approximated the expansion amplitude 
by its value on the physical energy shell. It then fol- 
lows from a straightforward, though tedious, calcula- 
tion, that for p large 

W(p)": -4iK-l{(mohoo)2+mohooK} -~/2 . (C.16) 

Hence 

(p'IU*~TAUIp> 

= iB ~ '  K -  ~f(p2_ 2mohoo, K)~2(p ' -  p + K) p' ~ p .  
K 

(C.17) 

For forward scattering, 

(P'I U*~TUIp) = 2re e 2 ha) f dakk-Z~[e(P)-e(P-k)-hoo] 

I dq~s[(q + k -  p)~] {e(p)-e(q)-hoo+ i,} X 

× ( p - k l T l q )  • (C.18) 

By an analysis similar to that which led to equation 
(c.7), 

I d3q~N[(q + p)~] {e(p)-- e(q)-- + &] (p-- kl T[q~ k -  ha) 

~- - iq(2Nc) (p - k~)- ~f(p2 _ 2mohoo, 0)~2(p ' -  p). (C. 19) 
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Thus, for K = 0, 

(p'l U*6fUIp)  = -i4zc e 2 phogcI(p) 
× f(p2-2mohog,0)~(p'-p) , (C.20) 

where 

I(P)= l dakk-2(P - kz)-1/~[e(p) - e (p -  k) - hog] 

=mo(4zcp2)-I I~idkk-l(2p2-k2- 2moho9)-l (C.21 ) 

with 
k0 = p - (p2 _ 2m0hco)'/z (C.22) 

and, for p large, 

I(p)~_mo(2rcp2) -~ log {k~p(mohog)-~}, (C.23) 

it following that 

(P'I U t JTUIp)=  iA(p)f(.P 2 -  2mohco, 0)/~(p'- p) (C.24) 

for K=0 .  

The contribution from UtAtTtJU may be computed 
similarly. 
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A Probable Crystallographic Path for Phase Transformations in Single Crystals 
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Assuming that the shuffles of a solid-state single-crystal phase transformation are least-motion processes 
consistent with the symmetry of the phases and with the accepted interatomic distances, it follows that 
the structure of the higher-symmetry phase will be predictable solely from its space-group symmetry 
and unit-cell dimensions if the complete crystal structure of the low-symmetry phase has already been 
determined [Swaminathan & Srinivasan, Acta Cryst. (1975). A31, 628-634]. The possibility has 
been here verified successfully in the sequence V ~ IV ~ II of the phase transformations in ammonium 
nitrate. 

Introduction 

At the end of a paper on the thermal cycle of phase 
transformations in potassium nitrate (Swaminathan & 
Srinivasan, 1975) is the following statement: 'Crystal- 
lographically an important point also emerges. If the 
crystal structure of the lower-symmetry phase is known, 
the crystal structure of the higher-symmetry phase may 
be predicted from only a knowledge of the unit-cell 
dimensions and the space-group symmetry of the higher- 
symmetry phase'. 

Many transformations in crystals of inorganic sub- 
stances show the important characteristics of marten- 
sitic transformations in metals and alloys. The under- 
lying idea of the paper on the KNO3 transformations 
is that the 'shuffles' of solid-state phase transforma- 
tions must be least-motion processes consistent with 
the symmetry of the phases and subject to acceptable 
interatomic van der Waals contact distances between 
chemically non-bonded atoms, and that therefore the 
structure of the higher-symmetry phase of a transfor- 
mation must be predictable from the structure of the 
low-symmetry phase. 

Martensitic transformations 

Martensitic transformations generally involve lattice 
deformations which lead to macroscopic shape changes 
in crystals undergoing transitions from one phase to 
another. Between the phases of a transformation exists 
a strong orientation relationship. Often the lattice de- 
formations will not produce the correct atomic or 
molecular positions within the unit-cell, and additional 
displacements (shuffles) which produce no macroscopic 
effects are then required. They may arise, for example, 
if the atomic positions in the parent deformed cell do 
not have the observed space-group symmetry of the 
daughter phase (Christian, 1965; Wayman, 1964). 

The polymorphs of ammonium nitrate 

Below its fusion temperature of 165°C ammonium 
nitrate exists in five distinct phases with reversible tran- 
sitions between them in the sequence V --~ IV --~ III --~ 
I I - - .  I (Hendricks, Posnjak & Kracek, 1932; Cleaver, 
Rhodes & Ubbelohde, 1963). In dry crystals without 
occluded water phase IV goes directly over to phase I! 
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